The stability of evolutionary p ( x ) $p(x)$ -Laplacian equation
نویسندگان
چکیده
منابع مشابه
The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملthe fibering map approach to a quasilinear degenerate p(x)-laplacian equation
by considering a degenerate $p(x)-$laplacian equation, a generalized compact embedding in weighted variable exponent sobolev space is presented. multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding nehari manifold.
متن کاملThe Kirchhoff Equation for the P – Laplacian
wt t (t, x)− K (‖wx (t, ·)‖ β Lr (R))a(wx (t, x))wxx (t, x) = 0, (2) w(0, x) = 8(x), wt (0, x) = 9(x), where K is an arbitrary function, sufficiently smooth and taking only positive values; and a = a(s) behaves like |s|p−2 near s = 0. The detailed assumptions on K , r , β, and a are given in (3), (4) and Condition 1 below. For K = K (s) = c1 + c2s (c1, c2 > 0) and p = r = β = 2, we get the famo...
متن کاملL∞-BOUNDS FOR WEAK SOLUTIONS OF AN EVOLUTIONARY EQUATION WITH THE p-LAPLACIAN
We investigate the smoothing effect of the parabolic part of a quasilinear evolutionary equation on its solution as time evolves. More precisely, the following initial-boundary value problem with Dirichlet boundary conditions is considered: (P) 8 >< >: ∂u ∂t = ∆pu + f(x, t, u(x, t)) for (x, t) ∈ Ω × (0, T ); u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ); u(x, 0) = u0(x) for x ∈ Ω. Here, ∆p stands for t...
متن کاملSTEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN
Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2017
ISSN: 1687-2770
DOI: 10.1186/s13661-016-0742-0